Search results for "insulating surface"

showing 2 items of 2 documents

Direct Visualization of Molecule Deprotonation on an Insulating Surface

2012

Elucidating molecular-scale details of basic reaction steps on surfaces is decisive for a fundamental understanding of molecular reactivity within many fields, including catalysis and on-surface synthesis. Here, the deprotonation of 2,5-dihydroxybenzoic acid (DHBA) deposited onto calcite (101;4) held at room temperature is followed in situ by noncontact atomic force microscopy. After deposition, the molecules form two coexisting phases, a transient striped phase and a stable dense phase. A detailed analysis of high-resolution noncontact atomic force microscopy images indicates the transient striped phase being a bulk-like phase, which requires hydrogen bonds between the carboxylic acid moie…

noncontact atomic force microscopyCarboxylic acidCatecholsGeneral Physics and AstronomyMicroscopy Atomic ForceKelvin probe force microscopy530Calcium Carbonatechemistry.chemical_compoundDeprotonationPhase (matter)Materials TestingHydroxybenzoatesMoleculeGeneral Materials ScienceReactivity (chemistry)CarboxylateParticle Sizechemistry.chemical_classificationKelvin probe force microscopeHydrogen bondinsulating surfaceGeneral EngineeringElectric ConductivityMolecular ImagingNanostructuresCrystallographychemistrydeprotonationProtons
researchProduct

Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks.

2013

Molecular self-assembly constitutes a versatile strategy for creating functional structures on surfaces. Tuning the subtle balance between intermolecular and molecule-surface interactions allows structure formation to be tailored at the single-molecule level. While metal surfaces usually exhibit interaction strengths in an energy range that favors molecular self-assembly, dielectric surfaces having low surface energies often lack sufficient interactions with adsorbed molecules. As a consequence, application-relevant, bulk insulating materials pose significant challenges when considering them as supporting substrates for molecular self-assembly. Here, the current status of molecular self-ass…

Models MolecularMaterials scienceAnchoringNanotechnologyInsulator (electricity)Dielectricmolecular adsorption530Molecular self-assemblyMoleculeGeneral Materials ScienceComputer Simulationnon-contact atomic forceOrganic Chemicalsinsulating surfacesMechanical EngineeringIntermolecular forceElectric Conductivityself-assemblymolecule-surface interactionsModels ChemicalMechanics of MaterialsMetalsmicroscopySelf-assemblyNon-contact atomic force microscopyAdvanced materials (Deerfield Beach, Fla.)
researchProduct